skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Willson, Sarah A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For next-generation superconducting radiofrequency (SRF) cavities, the interior walls of existing Nb SRF cavities are coated with a thin Nb3Sn film to improve the superconducting properties for more efficient, powerful accelerators. The superconducting properties of these Nb3Sn coatings are limited due to inhomogeneous growth resulting from poor nucleation during the Sn vapor diffusion procedure. To develop a predictive growth model for Nb3Sn grown via Sn vapor diffusion, we aim to understand the interplay between the underlying Nb oxide morphology, Sn coverage, and Nb substrate heating conditions on Sn wettability, intermediate surface phases, and eventual Nb3Sn nucleation. In this work, Nb-Sn intermetallic species are grown on a single crystal Nb(100) in an ultrahigh vacuum chamber equipped with in situ surface characterization techniques including scanning tunneling microscopy, Auger electron spectroscopy, and x-ray photoelectron spectroscopy. Sn adsorbate behavior on oxidized Nb was examined by depositing Sn with submonolayer precision on a Nb substrate held at varying deposition temperatures (Tdep). Experimental data of annealed intermetallic adlayers provide evidence of how Nb substrate oxidization and Tdep impact Nb-Sn intermetallic coordination. The presented experimental data contextualize how vapor and substrate conditions, such as the Sn flux and Nb surface oxidation, drive homogeneous Nb3Sn film growth during the Sn vapor diffusion procedure on Nb SRF cavity surfaces. This work, as well as concurrent growth studies of Nb3Sn formation that focus on the initial Sn nucleation events on Nb surfaces, will contribute to the future experimental realization of optimal, homogeneous Nb3Sn SRF films. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Nb 3 Sn film coatings have the potential to drastically improve the accelerating performance of Nb superconducting radiofrequency (SRF) cavities in next-generation linear particle accelerators. Unfortunately, persistent Nb 3 Sn stoichiometric material defects formed during fabrication limit the cryogenic operating temperature and accelerating gradient by nucleating magnetic vortices that lead to premature cavity quenching. The SRF community currently lacks a predictive model that can explain the impact of chemical and morphological properties of Nb 3 Sn defects on vortex nucleation and maximum accelerating gradients. Both experimental and theoretical studies of the material and superconducting properties of the first 100 nm of Nb 3 Sn surfaces are complicated by significant variations in the volume distribution and topography of stoichiometric defects. This work contains a coordinated experimental study with supporting simulations to identify how the observed chemical composition and morphology of certain Sn-rich and Sn-deficient surface defects can impact the SRF performance. Nb 3 Sn films were prepared with varying degrees of stoichiometric defects, and the film surface morphologies were characterized. Both Sn-rich and Sn-deficient regions were identified in these samples. For Sn-rich defects, we focus on elemental Sn islands that are partially embedded into the Nb 3 Sn film. Using finite element simulations of the time-dependent Ginzburg-Landau equations, we estimate vortex nucleation field thresholds at Sn islands of varying size, geometry, and embedment. We find that these islands can lead to significant SRF performance degradation that could not have been predicted from the ensemble stoichiometry alone. For Sn-deficient Nb 3 Sn surfaces, we experimentally identify a periodic nanoscale surface corrugation that likely forms because of extensive Sn loss from the surface. Simulation results show that the surface corrugations contribute to the already substantial drop in the vortex nucleation field of Sn-deficient Nb 3 Sn surfaces. This work provides a systematic approach for future studies to further detail the relationship between experimental Nb 3 Sn growth conditions, stoichiometric defects, geometry, and vortex nucleation. These findings have technical implications that will help guide improvements to Nb 3 Sn fabrication procedures. Our outlined experiment-informed theoretical methods can assist future studies in making additional key insights about Nb 3 Sn stoichiometric defects that will help build the next generation of SRF cavities and support related superconducting materials development efforts. Published by the American Physical Society2024 
    more » « less